APPENDIX D PHYSICAL TESTING LABORATORY REPORT COOPER TESTING LABORATORY

1951-X Colony St. Mt. View, CA 94043 TEL 650-968-9472 FAX 650-968-4228

Cooper Testing Labs, Inc. **Test Request Sheet**

1360-D Industrial Ave. Petaluma, CA 94952 TEL 707-765-2589 FAX 707-765-1227

		e box for bil			w Lab	Petaluma	27410	
		er@coopert		om) (hor	ne page: www.coopert	estinglabs.	com)	
CTL#			P.O. #:	JPL-365-0104	Your Client:			
Our Client:	Ground Ze	ro Analysis	Date In:		Project Name:	Pure Etch	Company	
Results To:	John	Lane	Due Date:		Project No.:	365		
Billing /	Address:	1714 Main	Street		Test	Test#	Price	Quantity
	Escalon	2727112			Moisture (MC)	1	\$13	
State:	Ca		Zip:	95320-1927	MD, 2-2.5" diameter	2	18	_
Boring	Depth ft	Test	<u> </u>	Instructions	MD 3" diameter	3	24	
LPE MW6	5-6	7, 8, 30		Instructions	PI A/B	4	180/125	
PE MW6	25-25.5	7, 8, 30			Sieve (SA) + 3/4" ma	5	90/115	
PE MW9	5-6	7, 8, 9, 30			Sieve + Hydrometer	6	150	
	25-25.5	7, 8, 9, 30			-#200Wash	7	60	6
PE MW9 PE MW11	5-5.5	7, 8, 9, 30			Specific Gravity	8	70	6
		7, 8, 9, 30		<u></u>	% Organics	9	70	4
PE MW11	25-25.5	7, 6, 9, 30			Total Porosity	10	90	
					UC	11	60	
					Direct Shear - UU *	12	65/point	
					DS-CU	13	80/point	
					DS-CD	14	170/point	i
					DS-Residual-Quick *	15	125/point	
					DS-Residual *	16	245/point	
			<u> </u>		TX-UU	17	100	
						18	185/point	
					TX-ICU	19	360 3point	
					TX-ICU- Staged	20	420/point	
				······································	TX-ICU-PP TX-ICU-PP- Staged	21	840 3point	
					Torsional pk. & Resid		400/point	
						23	240/point	
					Torsional resid. Staged	24	215/point	
					Torsional Peak	25	295	
					Incremental - Consol	26	360	
					CRS - Consol	27	50	
		<u> </u>			Sample Pick-up	28	200	
	rrosion Test				Durability Index	29	130	
Test	Price	Quantity		 	Collapse			6
Resistivity	\$50		As Received		Permeability 2-3" dia.	30	250	
Resistivity	60		Saturated (A		PERM on drain rock		360	
Resistivity	100	L	Minimum (Caltrans)	Logging per hour	32	205	
pН	25				Modified Proctor 4"	33		
Sulfate	45				Modified Proctor 6"	34	250	ļ
Sulfide	50				Remolding	35	50	
Redox	40				R-value/batch	36	185/215	
Chloride	35				Sand Equivalent (SE)		60	
CT Package	185		Caltrans		SS+Expansion-Pressure	38	210/225	
Package A	149				Shrink Swell (SS)	39	120	
Package B	144				Class 2 Spec	40	580	
Package C	176				Senior Technician	41	100	
Package D	185				Junior Technician	42	70	
		1			j	43	1	L

Need density, soil moisture, effective permeability, porosity and grain size distribution for all samples.

In addition, need organic carbon content from borings MW9 and MW11.

Please call if the tests marked above are not sufficient to acquire this information.

Results to John Lane, Ground Zero Analysis, 1714 Main Street, Escalon, CA 95320, 2098389888, 2098389883 fax

Organic Content Test ASTM D 2974-00 (Method C - 440 °C)

CTL JOB NO.: CLIENT :	322-006 Ground Zero Ar		F	PROJECT: ROJECT NO.:	Pure Etch Company 365	DATE: BY:	1/30/2004 MJ
Boring :	LPE MW9	LPE MW9	LPE MW11	LPE MW11		T	
Sample :							
Depth (ft.):	5	25	5	25			
/isual Description:	Brown CLAY	Yellowish Brown SAND	Brown CLAY	Yellowish Brown SAND			
Dish No.	OR15	OR15	OR9	OR14			
Dish wt., gm	75.42	75.42	79.46	82.73			
Soll, Org, Dish & H ₂ O, gm	123.48	137.20	131.94	151.76			
Oven Dry wt (105°C), gm	112.40	135.35	119.85	146.86			· · · · · · · · · · · · · · · · · · ·
Furnace Dry wt. (440°C), gm	444.50	135.15	118.82	146.50			
Moisture Content,	30.0	3.1	29.9	7.6			
% of Oven Dry Mass	30.0	J 0.1					

Specific Gravity by Pycnometer

ASTM D 854

Job#:		322-006		Date:	01/30/04			, , , , , , , , , , , , , , , , , , , ,	
Client:	Grou	ind Zero Ana	lysis	Run By:	MD				
Project:		tch Company		Checked	DC				
Boring:	LPE MW6	LPE MW6	LPE MW9	LPE MW9	LPE MW11	LPE M11			
Sample:									
Depth, ft.:	5	25	5	25	5	25			
Soil Description	Brown	Yellowish	Brown	Yellowish	Brown	Yellowish		1	
(visual)	CLAY with	Brown	CLAY	Brown	CLAY	Brown			
,	pockets of	SAND	[SAND	[SAND		[1
	Clayey	1	1				}		
	Sand	, <u></u>		<u> </u>		0.06			
Hydroscopic MC	0.01	0.00	0.02	0.00	0.02	0.06			
Wet Weight, gm	30.02	33.12	20.19	31.88	22.32	68.35	 		
Dry Wt., gm	29.81	33.05	20	31.82	22.11	64.26			
Dish, gm	11.58	11.55	11.43	11.61	11.43	712.1			
Wb, gm	704.3	720.6	695.9	728.8	691		 		
T °C	18	18.3	18	18	18.3	18			
Wa, gm	663.1	672.1	671.78	681.24	663.06	672.13			
Wo, gm	65.5	78.1	38.67	76.47	45.19	68.35			
Wo Corrected	64.75	77.85	37.83	76.24	44.32	64.26 1.0004			
κ	1.0004	1.0004	1.0004	1.0004	1.0004	1.0004			
Gs = <u>K Wo</u> Wo+Wa-Wb Specific Gravity (20°c)	2.75	2.65	2.76	2.66	2.71	2.65			
			T = Temperatur	e	Wo = Weight of	Air-Dried Soil			

Wb = Weight of Pycnometer, Soil & Water

T = Temperature

Wo = Weight of Air-Dried Soil

K= Temperature Correction Factor Wa= Weight of Pycnometer & Water

MC=Moisture Content

sisylsnA AssW evel 00S#

									訓練中提供的論學。在自己的主義
		2.4	0.66	3.0	1 -67	⊅. ړ	4,68		% Silt & Clay
		8.4.8	0.r	L'96	6.61	£.8e	7.4.2		% Sand
		5.9	0:0	6.0	8.0	£.0_	2.5		% Gravel
		3.285	7.2	9.715	32.2	6.971	21.6	w6	Wt. Ret. on #200 Sleve,
		2,11	0.0	6.0	1.2	9.0	3.2	ան	Wt. Ret. on #4 Sieve,
		391.9	9.711	327.7	1.931	ታ .671	130.0	шß	Weight of Dry Soil,
		€.08	3.68	8.08	2.08	<u>5.48</u>	2.38	wô	Weight of Dish,
	i	2.274	201.0	3.80₽	5.36.3	263.9	2,815	ան	Wt of Dish & Dry Soil,
		Brown SAND		Brown SAND	i e	Brown SAND			
J		1	YAJO nwora	· · · · · · · · · · · · · · · · · · ·	Prown CLAY		Brown CLAY		
		52	g	S 2	g S	79	g	Sample: epth, ft.:	
	<u> </u>	LPE MW11	CPE MW11	LPE MW9	LPE MW9	LPE MW6	LPE MW6	Boring:	
	Pure Etch Company.								
pc	Checked By:		1/30/2004	:ejsG		<u>sisylsnA</u>	Ground Zero	Client:	
WD	Run By:		392	Project No.:				:.oN dol	.
			garat e						

Remarks: As an added benefit to our clients, the gravel fraction may be included in this report. Whether or not it is included is dependent upon both the technician's time available and if there is a significant enough amount of gravel. The gravel is always included in the percent retained on the #200 sieve but may not be weighed separately to determine the

Hydraulic Conductivity ASTM D 5084

Method C: Falling Head Rising Tailwater

 Job No:
 322-006
 Boring:
 LPE MW6
 Date:
 02/03/04

 Client:
 Ground Zero Analysis
 Sample:
 By:
 MD/PJ

 Project:
 Pure Etch Company - 365
 Depth'
 5'
 Remolded:

Visual Classification: Brown CLAY w/ pockets of Clavey Sand

M	ax Sample F	Pressures, pa	si:		E	3: = >0	.95	("	B" is an Indicatio	n of saturation
Cell:	Bottom	Тор	Avg. Sigma 3			Max	Hydr	aulic Gra	adient: =	33
63.5	59.5	57.5	5		1.0E-06					
Date	Minutes	Head, (in)	K,cm/sec		9.0E-07					
1/27/2004	0.00	168.67	Start of Test		8.0E-07				_	
1/27/2004	66.00	167.26	2.7E-07							
1/27/2004	105.00	166.66	2.6E-07	_ <u>≥</u>	7.0E-07					
1/27/2004	212.00	164.66	2.6E-07	rmeability	6.0E-07	 				
1/27/2004	666.00	157.26	2.3E-07	Ē	5.0E-07	 		_		
1/28/2004	1409.00	147.26	2.3E-07	Pe .	4.0E-07	-	<u> </u>			
			·	;	3.0E-07	GO-	_			
				:	2.0E -07	1 V	<u> </u>			─ ◆
					1.0E-07	1				
					(0.0		500.0	1000.0	1500.0
								Time	, min.	

	Average Permeability:	2.E-07 cm/sec
Sample Data:	Initial	Final
Height, in	2.00	2.00
Diameter, in	1.88	1.92
Area, in2	2.78	2.90
Volume in3	5.55	5.79
Total Volume, cc	91.0	94.9
Volume Solids, cc	62.4	62.4
Volume Voids, cc	28.5	32.5
Void Ratio	0.5	0.5
Porosity, %	31.4	34.2
Saturation, %	87.6	95.8
Specific Gravity	2.75	2.75
Wet Weight, gm	196.7	202.8
Dry Weight, gm	171.7	171.7
Tare, gm	0.00	0.00
Moisture, %	14.6	18.1
Dry Density, pcf	117.8	112.9
Remarks:		

Remarks:

Constant Head Permeability Test ASTM D 2434

CTL Job No:	322-006	Boring:	LPE MW6	Date:	2/4/2004
Client:	Ground Zero Analysis	Sample:		By:	MD/PJ
Project Name:	Pure Etch Company	Depth, ft:	25		

365 Project No.:

Soil Description: Yellowish Brown SAND w/ Silt, slightly cemented

Ret	Remoiding Data:							
		Const	ant Head Cald	ulation, K=C	L/thA			
Test	Elapsed Time	Volume	Head Loss	Water	Hydraulic	Coef. Of Permeability		
#	t, (sec)	Q, (cc)	h (cm)	Temp (°C)	Gradient	K, (cm/sec)		
1	60	6	15.24	20.0	3.31	1.5E-03		
2	240	19	15.24	20.0	3.31	1.3E-03		
3	300	23	15.24	20.0	3.31	1.3E-03		
4	420	32	15.24	20.0	3.31	1.2E-03		
5	840	59	15.24	20.0	3.31	1.1E-03		
6	180	16	15,24	20.0	3.31	1.4E-03		
		A	verage Pe	rmeability	(cm/sec):	1.E-03		
Sample	Data:		Initial			<u>Final</u>		
Height, (L)	in.:		2.00			1.81		
Diameter,	in.:		1.93		1.93			
Area, (A)	in ² :		2.93		2.93			
Volume,	in³:		5.85		5.30			
Total Volume.	cc:		96			87		
Vol. of Solids,	cc:		55	1		55		
Vol. of Voids,	cc:		41			32		
Void Ratio	e: [0.74	[0.57		
Porosity,	%:		42.5			36.5		
Saturation,	%:		22.8	j		99.9		
Sp. Gravity:			2.65			2.65		
Wet Weight,	gm:		155.4			177.7		
Dry Weight	gm:		146.1			146.1		
Moisture,	%:		6.4			21.6		
Density,	pcf:		95.1			105.1		
Remarks:								

Hydraulic Conductivity ASTM D 5084

Method C: Falling Head Rising Tailwater

Job No: 322-006 Boring: LPE MW9 Date: 02/03/04
Client: Ground Zero Analysis Sample: By: MD/PJ

Project: Pure Etch Company - 365 Depth' 5' Remolded:

Visual Classification: Brown CLAY

M	ax Sample F	ressures, p	si:	B: =	>0.95	("B" is a	("B" is an indication of saturation)		
Cell:	Bottom	Тор	Avg. Sigma 3	N.	lax Hydrau	lic Gradier	nt: =	40	
73.5	69.5	67.5	5	1.0E-07 -				 _	
Date	Minutes	Head, (in)	K,cm/sec	9.0E-08				<u> </u>	
1/26/2004	0.00	79.38	Start of Test	8.0E-08				<u> </u>	
1/26/2004	424.00	78.53	4.4E-08	7.05.00					
1/27/2004	1129.00	77.18	4.4E-08	\$ 7.0E-08]		
1/27/2004	1920.00	75.73	4.2E-08	6.0E-08					
1/28/2004	2551.00	74.58	4.4E-08	7.0E-08 6.0E-08 5.0E-08	0	0	^	0	
				4.0E-08					
				3.0E-08					
		•		2.0E-08				+	
				1.0E-08			,	 	
			İ	0.0	500.0 100	0.0 1500.0	2000.0 25	00.0 3000.0	

Time, min.

145.7	Average Permeability:	4.E-08 cm/sec
Sample Data:	Initial	Final
Height, in	2.00	2.02
Diameter, in	1.88	1.89
Area, in2	2.78	2.81
Volume in3	5.55	5.67
Total Volume, cc	91.0	92.9
Volume Solids, cc	47.6	47.6
Volume Voids, cc	43.4	45.3
Void Ratio	0.9	1.0
Porosity, %	47.7	48.7
Saturation, %	89.7	99.9
Specific Gravity	2.76	2.76
Wet Weight, gm	170.3	176.6
Dry Weight, gm	131.4	131.4
Tare, gm	0.00	0.00
Moisture, %	29.6	34.4
Dry Density, pcf	90.1	88.3
Domarks:		

Remarks:

Constant Head Permeability Test ASTM D 2434

	Total Control of the	A DESCRIPTION OF THE PARTY OF T		The state of the s	
CTL Job No:	322-006	Boring:	LPE MW9	Date:	2/4/2004
Client:	Ground Zero Analysis	Sample:		By:	MD/PJ
Proiect Name:	Pure Etch Company	Depth, ft:	25		

Project No.: 365

Soil Description: Yellowish Brown SAND w/ Silt

Remolding Data:

Dry Weight

Moisture,

Density,

Remarks:

gm:

pcf:

%:

	er Payle endelen	Const	ant Head Cald	culation, K=C	\L/thA	20年1日日 日本第二年 第三		
Test	Elapsed Time	Volume	Head Loss	Water	Hydraulic	Coef. Of Permeability		
#	t, (sec)	Q, (cc)	h (cm)	Temp (°C)	Gradient	K, (cm/sec)		
1	60	23	17.78	20.0	4.00	5.1E-03		
2	90	35	17.78	20.0	4.00	5.1E-03		
3	120	47	17.78	20.0	4.00	5.2 E-03		
4	150	58	17.78	20.0	4.00	5.1E-03		
5	60	20	17.78	20.0	4.00	4.5E-03		
6	120	40	17.78	20.0	4.00	4.4E-03		
		. A	verage Pe	rmeability	(cm/sec):	5.E-03		
Sample	Data:		Initial			Final		
Height, (L)	in.:	<u> </u>	2.00		1.75			
Diameter,	in.:		1.93		1.93			
Area, (A)	in²:		2.93			2.93		
Volume,	in³:		5.85			5.12		
Total Volume.	cc:		96			84		
Vol. of Solids,	cc:		52			52		
Vol. of Volds,	cc:		44			32		
Void Ratio	e:		0.83			0.60		
Porosity,	%:	45.4			37.6			
Saturation,	%:	16.1			100.0			
Sp. Gravity:			2.66		2.66			
Wet Weight,	gm:		146.3		170.8			

139.3

5.0

90.7

139.3

22.6

103.6

Hydraulic Conductivity ASTM D 5084

Method C: Falling Head Rising Tailwater

 Job No:
 322-006
 Boring:
 LPE MW11
 Date:
 02/03/04

 Client:
 Ground Zero Analysis
 Sample:
 By:
 MD/PJ

 Project:
 Pure Etch Company - 365
 Depth'
 5'
 Remolded:

Visual Classification: Brown CLAY

Max Sample Pressures, psi:				B: = >0.95 ("B" is an indication			dication					
Cell:	Bottom	Тор	Avg. Sigma 3	<u> </u>	Ň	lax i	lydra	ulic G	radient:	=	33	
73.5	69.5	67.5	5	1.	0E-07							7
Date	Minutes	Head, (in)	K,cm/sec		0E-08							
1/27/2004	0.00	168.67	Start of Test		0E-08		<u> </u>					
1/27/2004	600.00	167.86	1.7E-08	7	0E-08							
1/28/2004	1223.00	166.86	2.1E-08	Ę,	- 1							
1/30/2004	483.00	167.46	1.9E-08	8	0E-08							
1/31/2004	1615.00	165.86	2.0E-08	- 5	0E-08							1
2/2/2004	1801.00	165.56	2.3E-08	<u>ه</u> 4.	0E-08			_				1
2/3/2004	2513.00	164.56	2.3E-08	3.	0E - 08 🕂							1
				2.	0E-08		0	-				1
				1.	0E-08 📙		-					4
				0.0 500.0 1000.0 1500.0 2000.0 2500.0 3000.0								
				Time, min.								

	Average Permeability:	2.E-08 cm/sec		
Sample Data:	Initial	Final		
Height, in	2.01	2.06		
Diameter, in	1.91	1.96		
Area, in2	2.88	3.00		
Volume in3	5.78	6.18		
Total Volume, cc	94.7	101.2		
Volume Solids, cc	52.1	52.1		
Volume Volds, cc	42.5	49.1		
Void Ratio	0.8	0.9		
Porosity, %	44.9	48.5		
Saturation, %	95.7	99.9		
Specific Gravity	2.71	2.71		
Wet Weight, gm	182.0	190.3		
Dry Weight, gm	141.3	141.3		
Tare, gm	0.00	0.00		
Moisture, %	28.8	34.7		
Dry Density, pcf	93.1	87.1		
Danadaa				

Remarks:

Constant Head Permeability Test ASTM D 2434

CTL Job No:	322-006	Boring:	LPE MW11	Date:	2/4/2004	
Client:	Ground Zero Analysis	Sample:		Ву:	MD/PJ	
Project Name:	Pure Etch Company	Depth, ft: _	25			

Project No.: 365

Soil Description: Yellowish Brown SAND w/ Gravel (loose)

Remoiding Data:

	noluling Data.	Constant Head Calculation, K=QL/thA				Commission Commission		
Test	Test Elapsed Time		Volume Head Loss Water		Hydraulic	Coef. Of Permeability		
#	t, (sec)	Q, (cc)	h (cm)	Temp (°C)	Gradient	K, (cm/sec)		
1	30	11	15.24	19.0	3.55	5.8E-03		
2	60	21	15.24	19.0	3.55	5.4E-03		
3	90	31	15.24	19.0	3.55	5.3E-03		
4	120	42	15.24	19.0 3.55		5.4E-03		
					·			
2 21 200 72 2 3 2 3		Average Permeability			(cm/sec): 5.E-03			
Sample	Data:		ini <u>tial</u>		Final			
Height, (L) in.:		2.00			1.69			
Diameter, in.:		1.93			1.93			
Area, (A) in ² :		2.93			2.93			
Volume, in³:		5.85			4.94			
Total Volume. cc:		96			81			
Vol. of Solids,	cc:	53			53			
Vol. of Volds, cc:		43			28			
Vold Ratio e:		0.81			0.53			
Porosity, %:		44.6			34.5			
Saturation, , %:		14.3			100.0			
Sp. Gravity:		2.65			2.65			
Wet Weight, gm:		146.8			168.6			
Dry Weight gm:		140.7			140.7			
Moisture, %:		4.3			19.9			
Density,	pcf:		91.6		108.4			
Remarks:	Gravel fragme	ents in center	of sample in	npeded flov	v	·		